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Abstract. In this paper, we discuss the problem of finding a minimum
connected dominating set (MCDS) in 3-dimensional space, where the
communication model is a unit ball graph (UBG). MCDS in UBG is
proved to be an NP-complete problem, and currently the best approx-
imation is 14.937 in [1]. However, their projection method during the
approximation deduction process is incorrect, which overthrows its final
bound completely. As a consequence, in this paper we will first propose
a new projection method to overcome their problem, illustrate the cardi-
nality upper bound of independent points in a graph (which will be used
to analyze the approximation ratio), and then optimize the algorithms
to select MCDS with prune techniques. The major technique we use is
an adaptive jitter scheme, which solves the open question in this area.

1 Introduction

A connected dominating set (CDS) is widely used for many network applica-
tions. For instance, it can form a virtual backbone to take charge of routing and
message transmission process. It can also be denoted as sink tunnels for data
gathering or sensor detection. Hence, there are lots of researches which related
to it in the literature [2,3]. A CDS is defined to be a subset of V in a given graph
G = (V,E), such that every vertex of V is either in this subset or adjacent to a
vertex in this subset and this subset can induce a connected subgraph.

Most literature discussed CDS in two-dimensional space, and use a unit
disk graph (UDG) to model the network. However, such model cannot precisely
describe the non-flat area such as mountainous region or underwater environ-
ment. Correspondingly, we can use a unit ball graph (UBG) to model such a
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network in 3-dimensional space. In a UBG G = (V,E), any two vertices are
adjacent (or connected) if and only if the Euclidean distance between them is
at most 1.

Since UBG can formulate a network environment more precisely than UDG,
CDS in UBG can represent more applications than that in UDG. For instance,
Wang and Li [4] constructed 3D landmark maps with vision data extracted from
camera images, and then used 3D-CDS to improve data association in applica-
tion of simultaneous localization and mapping (SLAM). Yang [5] implemented
3D-CDS as clusters to find an optimal topology control strategy in 3D wireless
sensor networks. In all, it is significant to design fast algorithms for selecting an
appropriate CDS set from a given network and analyze their performance. Typ-
ically, a CDS with minimum cardinality is the most efficient choice for practical
use, and we refer it as MCDS.

Computing minimum CDS (MCDS) is a well-known NP-complete problem,
and lots of approximation algorithms were proposed during last decade. Those
algorithms often include two phases. Firstly, they choose an maximal indepen-
dent set (MIS) from G. Second, they add some extra nodes from G to connect
this MIS, usually by Steiner trees. An MIS in a graph G = (V,E) is a subset
M ⊆ V such that any two vertices from M are not connected and we cannot
add another vertex from M\V to form a bigger MIS. Easy to see, in UDG or
UBG, the distance between any two vertices in M should be more than 1. To
analyze the performance of those approximations, the ratio mis(G)/mcds(G)
plays an important role, where mis(G) is the size of MIS the algorithm selected
and mcds(G) is the size of an optimal MCDS. In 2-dimensional situation, this
approximation ratio has been widely studied. Based on the fact that the neigh-
borhood area of any node can contain at most five independent points, Wan
et al. [6] proposed that mis(G) ≤ 4mcds(G) + 1. Later, Wu et al. [7] improved
this ratio to 3.8 by proving that the neighborhood of any two adjacent nodes
can contain at most 8 nodes. In [8], Gao et al. showed the bound can be at
most 3.453 and Li et al. improved the ratio into 3.4305 in [9]. Recently, Du and
Du [10] showed that mis(G) ≤ 3.399mcds(G) + 4.874, which is the best result
up to now.

Although finding minimum CDS in UBG is very similar as in UDG, the
analysis of those approximation ratios in UBG are much harder. Because, instead
of disk packing, sphere packing has more complicated properties. To the best of
our knowledge, few papers studied the approximation ratio for MCDS problem in
UBG. In the earlier stage, Hansen and Schmutz [11] discussed the expected size of
a CDS in a random UBG and compared the performance of existing algorithms.
Later, Butenko and Ursulenko [12] proved that the ratio of mis(G)/mcds(G) in
UBG is at most 11 by using the well-known fact that a sphere can touch at most
twelve spheres of the same size, which induced an approximation ratio of 22
for MCDS in UBG. Zhong et al. [13] claimed that such ratio could be reduced
to 16. Zou et al. [14] further reduced this ratio to 13 + ln 10. Recently, Kim
et al. [1] referred the idea in [7] and tried to answer how many independent
points can be contained in two adjacent unit balls. Finally, they improved the
ratio of mis(G)/mcds(G) into 10.917 by showing that there are at most 22
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independent points in two adjacent unit balls, and finally got an approximation
ratio of MCDS as 14.937, which is the best result up to now.

However, after careful investigation, we find that during the deduction process
in [1], one of the intermediate assertion is incorrect, which overthrows the final
result completely. The main technique they implemented in their proof is a pro-
jection method to the ball surface and then applying some famous graph theories,
and the problem comes under some scenarios when the projection result cannot
guarantee the distance lower bound of two independent points. Researchers later
found that designing a projection method to guarantee the distance lower bound
is not an easy step, and it remains an open question in recent years [15]. As a
consequence, in this paper we will first introduce a new projection method to
guarantee the distance bound, and then illustrate the bound of mis(G)/mcds(G)
with some new analyzing techniques. Since the mistake in [1] only influences the
selection of MIS, we will only focus on the first phase of MCDS construction.
Next, we will further optimize the algorithms for MCDS selection in [1] with
prune process and validate the efficiency of our design by numerical experiments.

The rest of the paper is organized as follows: Sect. 2 illustrates the problem
in [1] with counter examples. Section 3 introduces our new projection method to
analyze the ratio of mis(G)/mcds(G). Section 4 discusses how to improve MCDS
algorithm while Sect. 5 exhibits the simulation results with different parameter
settings. Finally, Sect. 6 summarizes this paper.

2 Independent Points in Two Adjacent Unit Balls

Similar with the analysis in [7], once we have the answer of “two-ball problem”,
we can deduce a better upper bound for the ratio mis(G)/mcds(G) and reduce
the overall approximation ratio.. two-ball problem means the problem of “how
many independent points can be contained in two adjacent unit balls”. Here two
adjacent unit ball means the Euclidean distance between two balls with unit
radius is at most 1, while any two points are called independent points if and
only if their Euclidean distance is at least 1.

Actually, what Kim et al. did in [1] follows this idea. However, their method
have an unavoidable error. In Subsect. 2.1 we will review their method to prove
two-ball problem, and then in Subsect. 2.2 we will precisely point out where their
problem lies and provide an counter example to validate our claim.

2.1 Review Kim’s Method in [1]

In [1], Kim et al. referred the idea in [7] and improved the ratio of mis(G)/mcds(G)
into 10.917 by showing that there are at most 22 independent points in two adja-
cent unit balls. Their answer to the two-ball problem is the most important contri-
bution in their paper. In order to solve the two-ball problem, Kim et al. extended
the approach for solving the famous Gregory-Newton problem [16]. They consid-
ered two adjacent unit balls, say, B1 and B2 with centers u1 and u2. To get an
upper bound of MIS in these two adjacent balls, they assumed that the Euclidean
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distance between u1 and u2 is equal to 1, since the total volume of B1∩B2 is larger
when the distance between these two adjacent nodes increases, and consequently
more independent nodes can be contained in B1 ∩ B2. They then divided all the
independent nodes into two categories: the nodes located in (B1 ∪ B2)\(B1 ∩ B2)
and the nodes in B1 ∩ B2. They mainly focused on the former part and claimed
that the size of MIS in this region is at most 20 with a special “projection” method.

Their projection method is a mapping rule to project all the independent
nodes in (B1 ∪B2)\(B1 ∩B2) to the surface of B1 ∪B2. The detailed description
can be shown as follows: For each independent node v, if v ∈ B1\B2 (respec-
tively, B2\B1), then draw a radial from u1 (respectively, u2) going through v,
and intersect the outer surface of B1 (denoted by Sur(B1), and respectively
Sur(B2)) at point P . By this mapping rule, they got the projection points set
{P1, P2, · · · , Pt}, where t is the size of MIS in (B1 ∪ B2)\(B1 ∩ B2).

Next, for any two points Pi and Pj , if their Euclidean distance (denoted by
d(Pi, Pj)) is between 1 and 3 arccos(1/7)π, they made a curve from Pi to Pj on
Sur(B1 ∪ B2) in the specified way as shown in Sect. 3.2.1 in [1]. These curves
partition Sur(B1 ∪ B2) into some tiny faces. By analyzing the lower bounds of
those faces’ areas and using Euler’s formula, they proved that t ≤ 20. Combined
with the fact that a unit ball can pack at most 12 independent nodes [16], they
finally concluded that the number of MIS in the union of two adjacent unit balls
is at most 22.

2.2 The Problem of Kim’s Method with Counter Examples

After careful investigation, we find that in Sect. 3.2 of [1], one of the intermediate
assertion is incorrect, which overthrows the final result completely. This assertion
says: “According to their mapping rule, on Sur(B1 ∪ B2), for any Pi

and Pj, d(Pi,Pj) > 1.” This assertion is a foundation of their work. With this
assertion, they could conclude that no two curves on Sur(B1∪B2) can intersect,
which is a declaration to guarantee the correctness of the lower bound for the
tiny faces’ areas on Sur(B1 ∪ B2).

x

y

z

v2

u2u1

v1 θ1 θ2

MP1 P2

Fig. 1. An Example to show that under some cases d(P1, P2) < 1
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However, although in many cases this assertion seems correct, it is not valid
for every possible scenario. Let us provide an example to show why it is incorrect.
In this example, v1 and v2 are two independent nodes located in two different
balls and their projection points are P1 and P2 respectively, as Fig. 1 shows.
Specially, we can let v1, v2, u1 and u2 locate in a same plane. Moreover, we set
θ1 + θ2 ≤ π, where θ1, θ2 denote ∠v1u1u2 and ∠v2u2u1 respectively.

Now we prove that d(P1, P2) ≤ 1 in this situation. Since all points in this case
are on a same plane, we can convert this case as a 2D plane in Fig. 2. Consider
ΔP1MP2 in Fig. 2, by the Law of Cosines, we have

d2(P1, P2) = d2(P1,M) + d2(M,P2) − 2d(P1,M)d(M,P2) cos ∠P1MP2.

From Fig. 2, we find that ∠P1MP2 = ∠T1MT2 + ∠T1MP1 + ∠T2MP2, where
∠u1MT1 = ∠u2MT2 = π/2. Here T1M and T2M are tangent lines to disk(u1)
and disk(u2) respectively (disk(u) is the cycle centered at u with radius 1).
According to Alternate Segment Theorem,

∠T1MP1 = ∠P1u1M/2, ∠T2MP2 = ∠P2u2M/2.

Therefore, ∠P1MP2 = (θ1 + θ2)/2 + π/3. Also, it is easy to get ∠P1u1M =
θ1 − π/3. Then,

d(P1,M) = 2 sin(θ1/2 − π/6), d(P2,M) = 2 sin(θ2/2 − π/6).

Hence, the Euclidean distance between P1 and P2 is:

d2(P1, P2) = 4 cos2(
θ1 + θ2

2
) − 4 cos(

θ1 + θ2
2

) cos(
θ1 − θ2

2
) + 1.

Since θ1 + θ2 ≤ π in this case, 0 ≤ cos(
θ1 + θ2

2
) ≤ cos(

θ1 − θ2
2

). Therefore,

d2(P1, P2) ≤ 1, which is a counter example for Kim’s assertion.
Actually, we can also get a lower bound for d(P1, P2) when v1 and v2 move

to points u1 and M respectively. In that case, d(P1, P2) is equal to 2 sin(π/12) ≈
0.5176, which is far less than 1.

x

T2T1

u2
u1

θ1 θ2

M
P1 P2

Fig. 2. An counter example in 2D

P1

P2

P'
2

P'
1

v1

v2u

Fig. 3. The new projection of P ′
1 and P ′

2
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3 Our New Projection Method

To achieve an approximation ratio of 10.917, we have to guarantee d(P ′
1, P

′
2) ≥ 1

for any pair of independent points on the surface of two adjacent unit balls. In
this section we introduce a new projection method to overcome Kim’s flaw. The
main idea of our method is an adaptive jitter scheme in the projection process.
We will first introduce the motivation of our new projection rule. Then, we will
give the definition of the new projection and prove d(P ′

1, P
′
2) ≥ 1 holds under

this projection.
Before introducing our new method, we need to introduce some notations and

definitions, which are frequently used in the rest of this section. For any two nodes
P1 and P2 in a three dimensional space, d(P1, P2) denotes the Euclidean distance
between them, while |P1P2| denotes the length of geodesic arc between P1 and
P2. disk(v) denotes the unit disk with center 1. Let Sur(B) denote the outer
surface of a geometric object B. In order to apply geometric principle to solve
our problem, we allow the distance between a pair of independent nodes to be
equal to one. (Actually, we will often use this critical distance in the coming part
of analysis.) Let B1 and B2 be two adjacent unit balls with centers u1 and u2,
and d(u1, u2) = 1. For any vertex v, the plane going through point v, u1 and u2

is called the principal plane of v. In addition to “principal plane”, we also define
a plane called “normal plane”, which is the perpendicular bisector of segment
u1u2, and denote by L the intersection of the normal plane with Sur(B1 ∪ B2).
Besides, we call the projection in Kim’s method “direct projection”.

According to our observation, when d(P1, P2) < 1 occurs, at least one of v1
and v2 is much closer to its dominator (u1 or u2), which can be found from
Fig. 1. Without loss of generality, we say the closer node is v1. In the unit ball
B1, we know the size of its MIS is at most 12. But if we want to put all the
12 independent nodes in B1, the efficient way is to put all of them on Sur(B1).
Consequently, if v1 is much closer to u1, it will greatly affect the total number
of MIS in B1, and the size of MIS in B1 ∪ B2 will also be affected. We con-
sider this MIS number decrease as the sacrifice to shorten d(P1, P2). In order to
quantitatively describe and use this property, we provide Lemma 1 as follows.

Lemma 1. A unit ball B with center u contains two independent points v1,
v2 and d(u, v1) = r1, d(u, v2) = r2. Their direct projection points are P1 and
P2. P ′

1 (respectively, P ′
2) is an arbitrary point in the cycle region on Sur(B1)

(respectively, Sur(B2)) with center P1 (respectively, P2) and spherical radius
arccos(r1/2) − π/3 (respectively, arccos(r2/2) − π/3) as Fig. 3 shows. Then
d(P ′

1, P
′
2) ≥ 1.

Proof. First, we consider the 2D situation as Figs. 4 and 5 show. In Fig. 4, point
v1 is in disk(u). M1, M2 are intersection points of uv1’ perpendicular bisector
with disk(u). Since all independent nodes with v1 are outside disk(v1), nodes in
disk(u) which are independent with v1 cannot locate above line M1M2. From
Lemma 1, it is easy to know the available region of P ′

1 on disk(u) is from P l
1

to P r
1 , where

∣
∣P l

1P1

∣
∣ = |P1P

r
1 | = arccos(r1/2) − π/3 (shown in Fig. 4). Further,
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∠M2uv1 = arccos(r1/2). Hence, |P r
1 M2| = π/3 and d(P r

1 ,M2) = 1. Similarly,
d(P l

1,M1) = 1. Based on the location of v2, there are two situations to discuss.

Case 1: If v2 is on the circle of disk(u), then P2, P ′
2 and v2 are the same point.

Since v2 must locate below M1M2 and P ′
1 is on the arc between P l

1 and P r
1 , it is

obvious to conclude that d(P ′
1P

′
2) ≥ 1.

Case 2: When v2 is not on the circle of disk(u) (as Fig. 5 shows), P ′
1 (P ′

2,
respectively) locates between P l

1 and P r
1 (P l

2 and P r
2 , respectively). Next, we will

prove that d(P ′
1, P

′
2) is minimum when P ′

1 is at point P r
1 and P ′

2 is at point P l
2.

As Fig. 5 shows, segment uM is the midperpendicular of P r
1 P l

2. And lines
P r
1 T1 and P l

2T2 are parallel to uM . Then, all points in the arc from P l
1 to

P r
1 and the arc from P l

2 to P r
2 are outside the parallel lines P r

1 T1 and P l
2T2.

Therefore, d(P ′
1, P

′
2) ≥ d(P r

1 P l
2). On the other side, d(P r

1 P l
2) ≥ 1 is equivalent to

∣
∣P r

1 P l
2

∣
∣ ≥ π/3. Combining with Law of Cosines, we have

∣
∣P r

1 P l
2

∣
∣ = ∠P r

1 P l
2 = ∠P1uP2 − ∠P1uP r

1 − ∠P2uP l
2

= arccos
(

r21 + r22 − 1
2r1r2

)

−
[

arccos
(r1

2

)

− π/3
]

−
[

arccos
(r2

2

)

− π/3
]

.

When r1 is given, it can be proved that the value of
∣
∣P r

1 P l
2

∣
∣ decreases with

the value of r2 increases. Thus, when r2 equals one,
∣
∣P r

1 P l
2

∣
∣ will be minimized,

which is exactly Case 1 where v2 is on the circle of disk1(u). Therefore, we have
d(P ′

1, P
′
2) ≥ 1.

Similarly, it is easy to extend the 2-dimensional situation to 3-dimensional
situation. �

According to Lemma 1, we come up with a new region called “Effective Projec-
tion Region” to describe the extra feasible moving space of P ′

1 or P ′
2.

Definition 1 (Effective Projection Region). For node v in a unit ball B,
its direct projection point is P . The region on Sur(B) whose center is point P
and spherical radius is arccos(r/2)−π/3 is called v’s effective projection region,
where r is the Euclidean distance between v and B’s center.

P2

P1
r

P1
l

P1

v2

v1

u

M1 M2

Fig. 4. Projection region with r2 = 1

r1

r2 P2
r

P1
l

T2

T1

P2
l

P1
r

u
v2

P1

v1

P2

M

Fig. 5. Projection region with r2 < 1
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Obviously, in 3D space, for any two independent nodes v1 and v2 in a unit
ball B, their direct projection points are P1 and P2. According to Lemma 1, if we
arbitrarily move P1 and P2 along Sur(B) inside their effective projection regions,
d(P1, P2) will always ≥1. Next, we will discuss the situation where v1 and v2 are
in two different balls. Before that, we first define our new projection rule.

Definition 2 (Region Projection). For any independent node v, its direct
projection point is P , then any point which locates in v’s effective projection
region is a Region Projection point of v.

Definition 3 (Final Projection). For any point v in (B1∪B2)\(B1∩B2), the
v’s principal plane intersects with L and we assume M is the closer intersection
point to v. P ′ is v’s final projection if and only if it satisfies conditions as follows:

(1) P ′ is a region projection point of v.
(2) P ′ is on v’s principal plane.
(3) Among all the points satisfying (1) and (2), P ′ is the farthest from M .

Theorem 1. For any two independent nodes v1 and v2 in (B1 ∪B2)\(B1 ∩B2),
their final projection points are P ′

1 and P ′
2. Then, d(P ′

1, P
′
2) ≥ 1.

Next, we will prove the correctness of Theorem 1. To make it simple, we first
discuss the two-dimensional situation as a special case in Sect. 3.1. Afterwards,
we generalize our conclusion for three-dimensional situation in Sect. 3.2.

By Lemma 1, if v1 and v2 are in the same unit ball, d(P ′
1, P

′
2) ≥ 1. Thus, we

only need to consider the situation when v1, v2 are in different balls. Without
loss of generality, let v1 in B1 and v2 in B2.

3.1 Proof of Theorem 1 in 2-Dimensional Space

When u1v1 and u2v2 are in the same principal plane, our problem turns into a
2D problem as shown in Fig. 6.

In Fig. 6, P1 and P2 are the direct projection points; θ1 and θ2 denote
∠P1u1u2 and ∠P2u2u1; r1 and r2 denote d(v1, u1) and d(v2, u2) respectively.
In addition, let α, β and γ denote |P ′

1M |, |P ′
2M | and ∠P ′

1MP ′
2. To simplify our

v2

v1

u2u1

P'1

θ1 θ2

M

P'2P1 P2

Q0

Fig. 6. Discussion in 2-dimension

x

v2

v1

u2u1

θ1
θ2

M

P1 P2

Fig. 7. Value of r1 in 2D space
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problem, we assume d(v1, v2) = d(u1, u2) = 1. In ΔP ′
1MP ′

2, it is easy to figure
out that P ′

1M = 2sinα
2 , P ′

2M = 2sinβ
2 , and γ = 2π

3 + α+β
2 . By cosine law, we

have

d2(P ′
1, P

′
2) =

(

2sin
α

2

)2

+
(

2sin
β

2

)2

− 2
(

2sin
α

2

)(

2sin
β

2

)

cos∠P ′
1MP ′

2

= 4cos2(
α + β

2
+

π

3
) − 4cos(

α + β

2
+

π

3
)cos(

α − β

2
) + 1. (1)

Let x = cos(
α + β

2
+

π

3
) and y = cos(

α − β

2
). Construct function f(x, y) =

4x2 − 4yx + 1, where y ≥ 0. Easy to see that x ≤ 0 ⇒ f(x, y) ≥ 1. That
means α + β ≥ π

3
. Moreover, f(x, y) ≥ 1 ⇔ x ≤ 0 or x ≥ y. If x ≥ y,

then cos(
α + β

2
+

π

3
) ≥ cos(

α − β

2
) ≥ 0. Hence, α + β ≤ π

3
and

α + β

2
+

π

3
≤

α − β

2
⇒ β +

π

3
≤ 0, which is impossible. Therefore, d(P ′

1, P
′
2) ≥ 1 is equivalent

to α + β ≥ π

3
.

According to Definition 3, we have α = θ1 + arccos(r1/2) − 2π/3, and β =
θ1 + arccos(r1/2) − 2π/3. Thus, our goal is to prove

θ1 + θ2 + arccos(
r1
2

) + arccos(
r2
2

) ≥ 5π

3
. (2)

As arccos(r1/2) ≥ π/3 and arccos(r2/2) ≥ π/3, we only need to consider the
case where θ1 + θ2 < π.

Note that d(v1, v2) = 1 and θ1 + θ2 < π, v1v2 can not be parallel to u1u2.
Without loss of generality, assume v1 is more closer to u1u2 as Fig. 6 shows.
Because θ1 + θ2 < π, it can be proved that ∠v1P2u2 < π/2. Thus, d(v1, P2) > 1.
If we move v2 to P2 and keep anything else unchanged, the new state will produce
shorter P ′

1P
′
2. In that state, r2 = 1.

Hence, it is sufficient to prove Eq. (2) under condition r2 = 1. Since d(v1, v2) =
1, we can figure out the relation between θ1 and r1, θ2. As Fig. 7 shows, we
build a polar coordinates on u1. In Δv2u1u2, it is easy to figure out that
d(v2, u1) = 2 sin(θ2/2). Then, the coordinates of v1 and v2 are (θ1, r1) and
(π/2 − θ2/2, 2 sin(θ2/2)). By mathematic knowledge, we have

θ1 = π − θ2
2

− arcsin

(

r21 − 1 + 4 sin2 θ2
2

4r1 sin θ2
2

)

. (3)

With Eq. (3), the value of |P ′
1M | is a function of r1 and θ2, and we denote it as

α(r1, θ2). By analyzing the sign of ∂α(r1, θ2)/∂r1, it can be proved that, when θ2
is fixed, α(r1, θ2) is minimum when r1 is minimum or maximal. Consequently,
when θ2 is given, the value of d(P ′

1, P
′
2) is minimum when r1 is minimum or

maximal. Therefore, what we need to do next is to verify d(P ′
1, P

′
2) ≥ 1 for the

two situations where r1 is minimum and maximum.
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Case 1 (r1 is minimal): For this case, we first need to figure out the minimal
value of r1 when θ2 is fixed. Considering v1 locates in disk(u1)\disk(u2), it is
obvious that, when v1 locates on the intersection of disk(v2) with disk(u2), r1
reaches minimal. Then, d(v1, u2) = 1, ∠v1u2v2 = π/3, θ1 = 2π/3 − θ2/2 and
r1 = 2 cos θ1. Consequently, θ1 + θ2 + arccos(r1/2) + arccos(r2/2) = 5π/3 which
meets inequality (2). Hence, in this case, d(P ′

1, P
′
2) ≥ 1.

Case 2 (r1 is maximal): It is easy to figure out that the maximal value of r1
is 1 when v1 locates on the boundary of disk(u1). In this case, P ′

1 and v1 are the
same. d(P ′

1, P
′
2) = d(v1, v2) = 1 which also meets the requirement in Theorem 1.

3.2 Proof of Theorem 1 in 3-Dimensional Space

When u1v1 and u2v2 are in different principal planes, we can follow the ideas in
2-dimension situation and give the same result.

First we explore the equivalent condition for d(P ′
1, P

′
2) ≥ 1. In Fig. 8, δ

denotes the dihedral angle between those two principal planes, Γ1 and Γ2; α
and β denote |P ′

1M1| and |P ′
2M2| respectively. Similar as analysis in Sect. 3.1,

we have d(P ′
1,M) = 2 sin α

2 , and d(P ′
2,M) = 2 sin β

2 . Using method of analytical
geometry, we have

d2(P ′
1, P

′
2) = 4 cos2

(
α + β

2
+

π

3

)

− 4 cos
(

α + β

2
+

π

3

)

cos
(

α − β

2

)

+ 1

+
[

cos (α − β) − cos
(

α + β +
2π

3

)]

(1 − cos δ) . (4)

Note that, when δ = 0, Eq. (4) turns to Eq. (1). Since positive δ also contributes
to d(P ′

1, P
′
2) from Eq. (4), then d(P ′

1, P
′
2) will be definitely larger than 1 when θ1 +

θ2 > π. Therefore, we still just need to consider the situation where θ1 + θ2 < π.
Let x = cos((α + β)/2 + π/3), y = cos(α − β)/2, and z = cos δ. Thus,

d2(P ′
1, P

′
2) = 2(1 + z)x2 − 4yx + 2(1 − z)y2 + 1.

x

y

z

v2

u2
u1

v1 δ

Γ2

Γ1

P'2

M1

θ1 θ2

L

M2

P'1 P1

P2

Q0

Fig. 8. Discussion in 3-dimensional space
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Construct function g(x, y) = 2(1 + z)x2 − 4yx + 2(1 − z)y2 + 1. It is easy to find
the solution of inequality g(x, y) ≥ 1 and its effective solution is

x

y
≤ 1 − z

1 + z
. (5)

Hence, d(P ′
1, P

′
2) ≥ 1 is equivalent to Eq. (5).

Similar with 2D situation we discussed in Sect. 3.1, we can also conclude that
the value of d(P ′

1, P
′
2) is smaller under condition r2 = 1 and it is sufficient to

prove Theorem 1 under this condition. Besides, when δ and θ2 are fixed, the
value of d(P ′

1, P
′
2) is minimum when r1 is minimum or maximum. Thus, we just

need to verify Eq. (5) for these two situations.

Case 1 (r1 is minimal): For this case, we first need to figure out the mini-
mal value of r1 when θ2 and δ are fixed. Considering v1 locates in B1\B2, it
is obvious that, when v1 locates on the intersection of disk(u2) on plane Γ1

with the unit ball whose center locates on v2, r1 reaches minimal. In this state,
we use θmin

1 to denote the current θ1. Then, we have rmin
1 = 2 cos θmin

1 and
2 sin 2θmin

1 sin θ2 cos δ − 2 cos 2θmin
1 cos θ2 = 1. Hence, when θ2 and δ are given,

we can figure out rmin
1 and θmin

1 .
Besides, in this situation the ranges of θ2 and δ we need consider are as

follows:
{

δ ∈ [0, arccos 1
3 ]

θ2 ∈ [π
3 , 2 arctan(1−2 tan2(δ/2)√

3
) + π

3 ].
(6)

By numerical method, we can verify Eq. (5) under conditions (6).

Case 2 (r1 is maximal): It is easy to figure out that the minimal value of
r1 is 1 when v1 locates on Sur(B1). In this case, P ′

1 and v1 are the same.
d(P ′

1, P
′
2) = d(v1, v2) = 1 which meets the requirement in Theorem 1.

In conclusion, according to the analysis in Sect. 3.1 and Sect. 3.2, Theorem 1
always follows. Therefore, we can use our new projection rule to fix the incor-
rectness in [1].

4 MCDS Construction Improvement

So far, we have analyzed the approximation ratio of the MIS in UBG. In this
section, we will introduce two prune methods to improve Kim’s CDS construction
algorithm. The following are some notations used in this section:

(1) For node u, N(u) = {v|v ∈ V (G)\u and d(u, v) ≤ 1}, N [u] = N(u) ∪ {x}.
(2) For node set C, N(C) = (∪v∈CN(v))\C.
(3) For u and C, Mu,C = {v|d(u, v) ≤ 1, v is a MIS node and v /∈ C}.
(4) For u, dom(u) = {v|d(u, v) ≤ 1 and v is a CDS node}.
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4.1 Algorithm for Computing CDS

The algorithm introduced by Kim is formally described in Algorithm1, which
has two steps. It firstly generates an MIS M such that every node in M is two
hops away from its nearest node in M . We can use Butenko and Ursulenko’s
algorithm to compute such MIS. The second step is to connect this MIS. Kim
used a greedy strategy, which starts with the original node and repeats round
by round. In each round, it picks a node v adjacent to the connected component
C computed in the previous rounds that makes |Mv,C | maximal, and add it to
C, It terminates when all the points in MIS are connected.

4.2 Improve the Generated CDS

In this 2-step algorithm, there is some redundancy in the given CDS C. Firstly,
through the computing of MIS, some nodes which have only one neighbor may
be added to the MIS in order to maintain the properties of MIS. But when the
connectors are added, those points would be useless for the whole CDS, and it
is better to adjust it to non-CDS nodes. Also, the redundancy may occur in
the inner side of the CDS due to the increased density of CDS nodes. Since the
redundancy occurs after the algorithm terminates, we can add two more steps
afterward to reduce CDS size with the help of prune techniques.

Algorithm 1. C-CDS-UBG(G(V,E))
1: Set M = Φ, B = Φ, V ′ = V .
2: Pick a root r ∈ V ′ that r has the biggest degree in V ′.
3: Set M = {r}, B = N(r), V ′ = V ′\N [r].
4: while V ′ �= Φ do
5: Pick a node u ∈ N(B) such that |N(u) ∩ V ′| is maximized.
6: Set M = M ∪ {u}, B = B ∪ (M ∩ V ′), and V ′ = V ′\N(u).
7: end while
8: Set C = {r} and M ′ = M = {r}.
9: while M ′ �= Φ do

10: Pick a node v ∈ N(C) such that |Mv,C | = max{|Mu,c|u ∈ N(C)}.
11: Set C = C ∪ {v} ∪ Mv,C and M ′ = M ′\Mv,C .
12: end while
13: Return C.

Notice that once remove a CDS node, the remaining CDS must maintain all
its original properties. Thus for a CDS node u ∈ G, it could be removed iff:

(1) Every point that u dominates must have at least one alternative dominator.
(2) G(C\{u}) is connected.

Correspondingly, we design two prune methods to reduce CDS size. The first
method is to reduce some leaf nodes instantly. We use postorder traversal to
traverse the CDS tree and reduce redundant points in it, as shown in Algorithm2.
Lemma 2. For any CDS C, After Algorithm2 is executed, C is also a CDS.
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Algorithm 2. CUTLEAF(u)
1: Set P = dom(u).
2: while P �= Φ do
3: Pick a node x ∈ P .
4: if x has not been visited then
5: CUTLEAF (x).
6: end if
7: Set P = P\{x}.
8: end while
9: if (|dom(v)| ≥ 2 for all v ∈ N(u) in graph G) and |dom(u)| = 1 then

10: C = C\{u}.
11: end if
12: Return C.

Proof. Let C ′ be the CDS after Algorithm2 is executed. If C ′ = C, then
Lemma 2 holds. Otherwise, let C0 be the initial CDS, Ci be the CDS after
the i-th reduction and ui be the node reduced in this iteration. We show that if
Ci is a CDS, then Ci+1 is a CDS, for i ≥ 0. According to Line 9, all N(ui+1) has
at least 2 dominators. Also, |dom(ui+1) = 1| ensures that only one CDS node is
adjacent to ui+1. So Ci+1 = Ci\{ui+1} is also connected. Hence, Ci+1 is a CDS.
Since C0 is a CDS, recursively after Algorithm 2 is executed, C ′ is also a CDS.

Algorithm 3. CUTINSIDE(G(V,E),C)
1: Let G′ be the subgraph generated by C, compute all the congestion nodes C′ ∈ C.
2: Pick up a node u ∈ V s.t. u /∈ C′ and (|dom(v)| ≥ 2 for all v ∈ N(u) in G).
3: C = C\{u}. Return.

Lemma 3. For any CDS C, After Algorithm3 is executed, C is also a CDS.

Proof. Similar to Lemma 2, Line 2 ensures that all N(u) has at least 2 domina-
tors. Moreover, u is not a congestion node ensures that C\{u} is connected.

Algorithm 4. R-C-CDS-UBG(G(V,E))
1: P =C-CDS-UBG(G(V, E)), Pick a root r ∈ V ′ that r has the biggest degree in V ′.
2: Run CUTLEAF(r).
3: Run CUTINSIDE(G(V, E),P ) for several(30) times.
4: Return P .

With two algorithms above, Algorithm4 is an improvement for computing CDS.

Theorem 2. The time and space complexity of Algorithm4 R-C-CDS-UBG is
O(n2), where n is the number of nodes in a given input UBG.
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Proof. Since it is necessary to store the graph, the space complexity of Algo-
rithm4 is O(n2). Then we show that the time complexity is O(n2).

Firstly, the input time complexity for Algorithm4 is O(n). For the first step
of Algorithm 1 (Lines 1–7), each round of the while loop add one point to the
MIS, so the while loop ends in O(n) rounds. In each round, a node x should
be picked. Since we can store and update it instantly, the time complexity of
node selection is O(n) each round. Thus the time complexity of the whole loop
is O(n2).

For the second step of Algorithm 1 (Lines 8–13), since each round of the while
loop joint at least one MIS point to the CDS, and the MIS has O(n) nodes, the
loop ends in O(n) rounds. During each round, we use an array to store |Mv,C |,
and the maintenance time complexity is O(n), since only points in N(N(v))
would change its |Mv,C |. Also, the time complexity to select a v is O(n) each
round. Hence, the time complexity of Algorithm 1 is O(n2).

For Algorithm 2, we can store |dom(u)| for each u ∈ G. Once a CDS node v is
reduced, only dom(N(v)) nodes need to change, so the maintenance complexity
is O(n). Next, each edge in G will be visited for a constant times, so the overall
time complexity if O(n2). For Algorithm 3, we can use the Tarjan’s strongly
connected components algorithm for computing congestion set C ′, whose time
complexity is O(n2). Hence, the time complexity of Algorithm 3 is O(n2).

For Algorithm 4, it runs Algorithm 1 once, Algorithm 2 once, and Algorithm 3
for a constant time, each with time O(n2). Therefore, the time complexity of
Algorithm 4 is O(n2).

5 Simulation Results

In this section, we compare Algorithm 4 with Kim’s Algorithm 1 to solve MCDS
in UBGs. For the simulations, we deploy wireless nodes in a 20 × 20 × 20 three-
dimensional virtual space. We also ensure that the graph induced by all nodes is
connected. The number of nodes varies from 100 to 1000 by increasing 100. We
use 1 as the maximum transmission range of the nodes. Through the random
graph generation process, we control the lower bound of distance between two
nodes at 0.25, 0.5, 0.75. Thus, we can have graphs with different node density.
In Fig. 9, we use R-C-CDS-UBG to identify our algorithm, and C-CDS-UBG to
identify Kim’s.

Figure 9 shows the comparison of the performance between two algorithms
when the lower bound of distance between two points is 0.25, 0.5, and 0.75
respectively. Through the figure, we can see that whatever the graph is, our
algorithm can give a better answer than Kim’s averagely. the ratio between our
answer and Kim’s is nearly 0.78. Also, through the comparison, we can figure
out that in most situations, our improvement is steady.

Figure 10 shows a sample of UBG which has 500 points. The first picture
is the result by Kim’s algorithm with 208 CDS points, while the second is the
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Fig. 9. Comparison with different parameter settings

(a) CDS by Kim’s Alg. 1. |CDS|=208 (b) CDS by Prune Alg. 4. |CDS| = 155

Fig. 10. An example solution with n = 500 points.

result by prune algorithm with 155 CDS points. In this example our algorithm
reduces CDS size by 25 %, and it can be found in the graph that lots of the
boundary nodes are dropped to make the CDS much smaller.

6 Conclusion

In this paper, we first pointed out the problem in Kim’s method [1]. Then, we
proposed a new projection method for solving the two-ball problem. With this
new projection method, we successfully improved the ratio of mis(G)/mcds(G)
in UBG into 10.917. Moreover, we also optimized the algorithm for minimum
connected dominating set selection in [1] with prune process and validate the
efficiency of our design by numerical experiments.
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